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Agenda

• Explainable AI


• Counterfactual explanations and recourse


• Robustness


• what does it mean?


• why is it needed?


• how can we achieve it?


• Open discussion: robustness and other areas of CS

3



Explainable AI (XAI)

Techniques and methods that make AI decisions understandable by humans

Why did you do that?

00011100001100

What??
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Explainable AI (XAI)

XAI methods span a wide range of topics within AI and beyond, e.g.


• automated planning


• machine learning (ML)


• human computer interaction


Today we will focus on explaining deep neural networks (DNNs) 

• will discuss high-level concepts rather than specific algorithms
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Explainable AI (XAI)

XAI methods span a wide range of topics within AI and beyond, e.g.


• automated planning


• machine learning (ML)


• human computer interaction


Today we will focus on explaining deep neural networks (DNNs) 

• high-level concepts rather than specific algorithms


• fictional use case and explanations
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Supervised learning
Training set

• Age: 25

• Amount: £40K

• Duration: 36M

• Age: 32

• Amount: £20K

• Duration: 24M

• Age: 82

• Amount: £26K

• Duration: 34M

• Age: 54

• Amount: £14K

• Duration: 24M

denied

denied

accepted

accepted
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Supervised learning
Training set Deep neural network

(using your favourite algorithm)
• Age: 25

• Amount: £40K

• Duration: 36M

• Age: 32

• Amount: £20K

• Duration: 24M

• Age: 82

• Amount: £26K

• Duration: 34M

• Age: 54

• Amount: £14K

• Duration: 24M

denied

denied

accepted

accepted
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Supervised learning
Deep neural network

(using your favourite algorithm)

Predicted class: 

denied

New instance

Training set

• Age: 25

• Amount: £40K

• Duration: 36M

• Age: 32

• Amount: £20K

• Duration: 24M

• Age: 82

• Amount: £26K

• Duration: 34M

• Age: 54

• Amount: £14K

• Duration: 24M

denied

denied

accepted

accepted
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Supervised learning
Training set

Predicted class: 

denied

Focus: explaining model predictions

• Why is it denied?

• Why not accepted?

• How do I get accepted?

• And many more questions…

• Age: 25

• Amount: £40K

• Duration: 36M

• Age: 32

• Amount: £20K

• Duration: 24M

• Age: 82

• Amount: £26K

• Duration: 34M

• Age: 54

• Amount: £14K

• Duration: 24M

denied

denied

accepted

accepted

New instance
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Challenge

Loan denied
• Age: 30

• Amount: £15K

• Duration: 24M

DNNs are black boxes!

?
!?!
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Why is it a problem?
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Why is it a problem?

The General Data Protection Regulation (GDPR) 

• Art 22: limits to decision-making based solely on automated processing  

• Art 13, 2f: right to be provided with meaningful information about the logic 
involved in the decision-making
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How to achieve XAI?

• Linear models

•Decision trees

•Rule-based models

•Deep networks

•Ensemble models

XAI

Post-hoc 
explainability

Interpretable 
models
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How to achieve XAI?

• Linear models

•Decision trees

•Rule-based models

•Deep networks

•Ensemble models

XAI

Post-hoc 
explainability

Interpretable 
models
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Counterfactual explanations (CXs)

Original instance

•Age: 30

•Amount: £15K

•Duration: 24M

Loan denied
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Counterfactual explanations (CXs)

Counterfactual explanation

•Age: 30

•Amount: £10K

•Duration: 24M

The application would have been accepted 
 had you asked for £10K instead of £15K

Original instance

•Age: 30

•Amount: £15K

•Duration: 24M

Loan denied
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CX example
Consider the neural network  below: ℳ
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CX example
Consider the neural network  below: ℳ

• Given input  ,  predicts class 1 (  ) 


• A possible CX may be   , for which  predicts class 0

xF = [1,2] ℳ y1 > y0

x = [2.1,2] ℳ
19



CX example
Consider the neural network  below: ℳ

• Given input  ,  predicts class 1 (  ) 


• A possible CX may be   , for which  predicts class 0

xF = [1,2] ℳ y1 > y0

x = [2.1,2] ℳ
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Computing a CX

• Given an input  and a binary classifier  such that 


• A distance function  

xF ℳ ℳ(xF) = c

d

21



Computing a CX

• Given an input  and a binary classifier  such that 


• A distance function  

 
A counterfactual explanation  is computed as:

xF ℳ ℳ(xF) = c

d

x

arg min
x

 d(xF, x)

subject to ℳ(x) = 1 − c
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Computing a CX
Most approaches solve relaxation defined as:

Counterfactual explanations without opening the black box: automated decisions and the GDPR. Wachter et al, Harvard Journal of Law & Technology 2018.

arg min
x

 ℓ(ℳ(x),1 − c) + λ ⋅ d(xF, x)

23



Computing a CX
Most approaches solve relaxation defined as:

where:


•  is a differentiable loss function which minimises the gap between  
current and desired prediction 

•  controls distance trade-off

ℓ

λ

arg min
x

 ℓ(ℳ(x),1 − c) + λ ⋅ d(xF, x)

Counterfactual explanations without opening the black box: automated decisions and the GDPR. Wachter et al, Harvard Journal of Law & Technology 2018. 24



Computing a CX
Most approaches solve relaxation defined as:

where:


•  is a differentiable loss function which minimises the gap between  
current and desired prediction 

•  controls distance trade-off

ℓ

λ

arg min
x

 ℓ(ℳ(x),1 − c) + λ ⋅ d(xF, x)

Counterfactual explanations without opening the black box: automated decisions and the GDPR. Wachter et al, Harvard Journal of Law & Technology 2018. 25



Tool support

https://github.com/Trusted-AI/AIX360 https://github.com/SeldonIO/alibi

https://github.com/pytorch/captum https://github.com/carla-recourse/CARLA



Is minimising distance always good?

 CXs are often indistinguishable from adversarial examples!

Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis. Pawelczyk et al, AISTATS 2022.
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! 
DANGER

Brittle explanations ahead!

Threats 

1. Input perturbations 

2. Model perturbations 

3. Model multiplicity 

4. Noisy execution
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! 
DANGER

List of references is partial - too much to cover in 90 minutes!
29

Threats 

1. Input perturbations 

2. Model perturbations 

3. Model multiplicity 

4. Noisy execution

Robust XAI



! 
DANGER

Robust XAI

Heuristic vs Exhaustive robustness guarantees
30

Threats 

1. Input perturbations 

2. Model perturbations 

3. Model multiplicity 

4. Noisy execution



! 
DANGER

Brittle explanations ahead!
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Threats 

1. Input perturbations 

2. Model perturbations 

3. Model multiplicity 

4. Noisy execution



Input perturbations
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Input perturbations
•Age: 30

•Amount: £15K

•Duration: 24M
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Input perturbations

•Age: 30

•Amount: £13K

•Duration: 24M

•Age: 30

•Amount: £15K

•Duration: 24M

34



Input perturbations

•Age: 30

•Amount: £13K

•Duration: 24M

•Age: 30

•Amount: £15K

•Duration: 24M

•Age: 30

•Amount: £16K

•Duration: 24M
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Input perturbations

•Age: 30

•Amount: £13K

•Duration: 24M

•Age: 30

•Amount: £15K

•Duration: 24M

•Age: 30

•Amount: £10K

•Duration: 12M

•Age: 30

•Amount: £16K

•Duration: 24M

? ??
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Implications

Lack of robustness to input changes poses a number of problems!


we expect phenomena in the world that are similar to have similar explanations


• is the explanations really capturing how the black-box works?


• we would expect neighbouring inputs to be processed in similar ways.


• uncertainty in how data is collected may have huge impact on explanation

Robustness in Machine Learning Explanations: Does it Matter? Hancox-Li, FAT* 2020.
 37



Implications

Lack of robustness to input changes poses a number of problems!


we expect phenomena in the world that are similar to have similar explanations


• is the explanation really capturing how the black-box works?


• we would expect neighbouring inputs to be processed in similar ways


• uncertainty in how data is collected may have huge impact on explanation

Robustness in Machine Learning Explanations: Does it Matter? Hancox-Li, FAT* 2020.
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Implications
Can be exploited to train adversarial models that generate unfair explanations!

Counterfactual Explanations Can Be Manipulated. Slack et al, NeurIPS 2021.


(a) Training with BCE Objective (b) Training Adversarial Model

Figure 1: Model trained with BCE objective and adversarial model on a toy data set using
Wachter et al.’s Algorithm [6]. The surface shown is the loss in Wachter et al.’s Algorithm with
respect to x, the line is the path of the counterfactual search, and we show results for a single point,
x. For the model without the manipulation (subfigure 1a), the counterfactuals for x and x + �
converge to the same minima and are similiar cost recourse. For the adversarial model (subfigure 1b),
the recourse found for x has higher cost than x+ � because the local minimum initialized at x is
farther than the minimum starting at x+ �, demonstrating the problematic behavior of counterfactual
explanations.

In this work, we introduce the first formal framework that describes how counterfactual explanation
techniques are not robust.2 More specifically, we demonstrate how the family of counterfactual
explanations that rely on hill-climbing (which includes commonly used methods like Wachter et al.’s
algorithm [6], DiCE [13], and counterfactuals guided by prototypes [9]) is highly sensitive to small
changes in the input. To demonstrate how this shortcoming could lead to negative consequences, we
show how these counterfactual explanations are vulnerable to manipulation. Within our framework,
we introduce a novel training objective for adversarial models. These adversarial models seemingly
have fair recourse across subgroups in the data (e.g., men and women) but have much lower cost
recourse for the data under a slight perturbation, allowing a bad-actor to provide low-cost recourse
for specific subgroups simply by adding the perturbation. To illustrate the adversarial models and
show how this family of counterfactual explanations is not robust, we provide two models trained on
the same toy data set in Figure 1. In the model trained with the standard BCE objective (left side
of Fig 1), the counterfactuals found by Wachter et al.’s algorithm [6] for instance x and perturbed
instance x+� converge to same minima (denoted A(x) and A(x+�)). However, for the adversarial
model (right side of Fig 1), the counterfactual found for the perturbed instance x+ � is closer to the
original instance x. This result indicates that the counterfactual found for the perturbed instance x+�
is easier to achieve than the counterfactual for x found by Wachter et al.’s algorithm! Intuitively,
counterfactual explanations that hill-climb the gradient are susceptible to this issue because optimizing
for the counterfactual at x versus x+ � can converge to different local minima.

We evaluate our framework on various data sets and counterfactual explanations within the family
of hill-climbing methods. For Wachter et al.’s algorithm [6], a sparse variant of Wachter et al.’s,
DiCE [13], and counterfactuals guided by prototypes [9], we train models on data sets related to loan
prediction and violent crime prediction with fair recourse across subgroups that return 2-20⇥ lower
cost recourse for specific subgroups with the perturbation �, without any accuracy loss. Though
these results indicate counterfactual explanations are highly vulnerable to manipulation, we consider
making counterfactual explanations that hill-climb the gradient more robust. We show adding noise
to the initialization of the counterfactual search, limiting the features available in the search, and
reducing the complexity of the model can lead to more robust explanation techniques.

2 Background

In this section, we introduce notation and provide background on counterfactual explanations.

2Note, that the usage of “counterfactual” does not have the same meaning as it does in the context of causal
inference, and we adopt the term “counterfactual explanation” for consistency with prior literature.

2
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Solutions
Input perturbations may invalidate CXs!


• Dominguez-Olmedo propose a method to preserve validity (minmax formulation)

On the Adversarial Robustness of Causal Algorithmic Recourse

Ricardo Dominguez-Olmedo 1 2 Amir-Hossein Karimi 1 3 Bernhard Schölkopf 1

Abstract
Algorithmic recourse seeks to provide actionable
recommendations for individuals to overcome un-
favorable classification outcomes from automated
decision-making systems. Recourse recommenda-
tions should ideally be robust to reasonably small
uncertainty in the features of the individual seek-
ing recourse. In this work, we formulate the ad-
versarially robust recourse problem and show that
recourse methods that offer minimally costly re-
course fail to be robust. We then present methods
for generating adversarially robust recourse for
linear and for differentiable classifiers. Finally,
we show that regularizing the decision-making
classifier to behave locally linearly and to rely
more strongly on actionable features facilitates
the existence of adversarially robust recourse.

1. Introduction
Machine learning (ML) classifiers are increasingly being
used for consequential decision-making in sensitive domains
such as criminal justice and finance (e.g., granting pretrial
bail or loan approval). The need to preserve human agency
despite the rise in automated decisions faced by individu-
als has motivated the study of algorithmic recourse, which
aims to empower individuals by providing them with ac-
tionable recommendations to reverse unfavorable algorith-
mic decisions (Ustun et al., 2019). Prior works have ar-
gued that for recourse to warrant trust, the decision-maker
must commit to reversing an unfavorable decision upon the
decision-subject fully adopting their prescribed recourse
recommendations (Wachter et al., 2017; Venkatasubrama-
nian & Alfano, 2020; Karimi et al., 2022). We argue that if
algorithmic recourse is indeed to be treated as a contractual
agreement, then recourse recommendations must be robust
to plausible uncertainties arising in the recourse process.

1Max Planck Institute for Intelligent Systems, Tübingen, Ger-
many 2University of Tübingen, Germany 3ETH Zürich, Switzer-
land. Correspondence to: Ricardo Dominguez-Olmedo <ri-
cardo.olmedo@tuebingen.mpg.de>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

x

Non-robust

recourse action

Robust

recourse action

Figure 1: Adversarially robust recourse actions must lead
to positive classification outcomes for all individuals in the
uncertainty set around the individual x seeking recourse.

For instance, consider a banking institution that promises
to approve the loan of an individual if they increase their
savings by some given amount. Suppose that by the time
the individual achieves the prescribed savings increase, the
individual’s weekly working hours have been slightly re-
duced due to unforeseen circumstances and the decision-
making classifier still deems the individual likely to default
on the loan. Shielding recourse against uncertainty ex-post
by nonetheless granting the loan may be detrimental to
both the bank (e.g., monetary loss) and the individual (e.g.,
bankruptcy and inability to secure future loans), while break-
ing the recourse promise would negate the effort exerted by
the individual and erode trust in the decision maker. We
therefore argue for the necessity of ensuring that recourse
recommendations are ex-ante robust to uncertainty.

In this work, we direct our focus towards robustifying re-
course recommendations against uncertainty in the features
of the individual seeking recourse. Such uncertainty may
arise due to the temporal nature of recourse (e.g., some
features may not be static), and/or the presence of noise,
adversarial manipulation and other misrepresentations or
errors. We adopt a robust optimization view and propose to
characterize the uncertainty around the reported features of
the individual x by defining an uncertainty set B(x) which
we assume contains the true features of the individual at
the time recourse is offered and/or plausible future feature
values arising from the temporal nature of recourse. We then
seek recourse recommendations that remain valid (i.e., lead

On the Adversarial Robustness of Causal Algorithmic Recourse. Dominguez-Olmedo et al, ICML 2022.
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Solutions
Zhang et al propose to use density to guide CX search


• Similar inputs should “gravitate” towards similar CXs

Density-based Realiable and Robust Explainer for Counterfactual Explanations. Zhang et al, Expert Systems with Applications, 2023.
 41



! 
DANGER

Brittle explanations ahead!

42

Threats 

1. Input perturbations 

2. Model perturbations 

3. Model multiplicity 

4. Noisy execution



Model perturbations

t0
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Model perturbations

t0
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Model perturbations

t0 t1
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Model perturbations

t0 t1 tn
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Model perturbations

t0 t1 tn
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Model perturbations

t0 t1 tn tn+1

48



Model perturbations

t0 t1 tn tn+1
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Model perturbations

t0 t1

DENIED

tn tn+1
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Implications
Model shifts may occur as a result of data shifts


Dilemma 

• Trust the old CX, although possibly contradicted by new data


• Trash the old CX, possibly upsetting end users
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Implications
Model shifts may occur as a result of data shifts


Dilemma 

• Trust the old CX, although possibly contradicted by new data


• Trash the old CX, possibly upsetting end users
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Implications
Model shifts may occur as a result of data shifts


Dilemma 

• Trust the old CX, although possibly contradicted by new data


• Trash the old CX, possibly upsetting end users

accepted
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Implications
Model shifts may occur as a result of data shifts


Dilemma 

• Trust the old CX, although possibly contradicted by new data


• Trash the old CX, possibly upsetting end users

denied
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Solutions
Ferrario and Loi proposed an augmentation technique to mitigate the issue

t0 t1 tn

The Robustness of Counterfactual Explanations Over Time. Ferrario and Loi, IEEE Access, 2022.
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Solutions
Ferrario and Loi proposed an augmentation technique to mitigate the issue

t0 t1 tn

The Robustness of Counterfactual Explanations Over Time. Ferrario and Loi, IEEE Access, 2022.
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Solutions
Ferrario and Loi proposed an augmentation technique to mitigate the issue

t0 t1 tn

57The Robustness of Counterfactual Explanations Over Time. Ferrario and Loi, IEEE Access, 2022.




Solutions
Ferrario and Loi proposed an augmentation technique to mitigate the issue

t0 t1 tn

The Robustness of Counterfactual Explanations Over Time. Ferrario and Loi, IEEE Access, 2022.
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Solutions
Ferrario and Loi proposed an augmentation technique to mitigate the issue

t0 t1 tn

The Robustness of Counterfactual Explanations Over Time. Ferrario and Loi, IEEE Access, 2022.
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Solutions
Upadhyay et al use a minmax formulation to inject model robustness


• Assume the existence of a set of plausible model shifts 


• Use  to denote perturbed version of  under 

Δ

ℳδ ℳ δ ∈ Δ

Towards Robust and Reliable Algorithmic Recourse. Upadhyay et al, NeurIPS, 2021.
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Solutions
Upadhyay et al use a minmax formulation to inject model robustness


• Assume the existence of a set of plausible model shifts 


• Use  to denote perturbed version of  under 

Δ

ℳδ ℳ δ ∈ Δ

Towards Robust and Reliable Algorithmic Recourse. Upadhyay et al, NeurIPS, 2021.


arg min
x

 arg max
δ∈Δ

 ℓ(ℳδ(x),1 − c) + λ ⋅ d(xF, x)
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Solutions
Upadhyay et al use a minmax formulation to inject model robustness


• Assume the existence of a set of plausible model shifts 


• Use  to denote perturbed version of  under 

Δ

ℳδ ℳ δ ∈ Δ

Towards Robust and Reliable Algorithmic Recourse. Upadhyay et al, NeurIPS, 2021.


arg min
x

 arg max
δ∈Δ

 ℓ(ℳδ(x),1 − c) + λ ⋅ d(xF, x)
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Solutions
Jiang et al use interval abstractions to obtain formal robustness guarantees

Formalising the Robustness of Counterfactual Explanations for Neural Networks. Jiang et al, AAAI 2023. 
Provably Robust and Plausible Counterfactual Explanations for Neural Networks via Robust Optimisation. Jiang et al, ACML 2023. 64



Solutions
Jiang et al use interval abstractions to obtain formal robustness guarantees

65
Formalising the Robustness of Counterfactual Explanations for Neural Networks. Jiang et al, AAAI 2023. 
Provably Robust and Plausible Counterfactual Explanations for Neural Networks via Robust Optimisation. Jiang et al, ACML 2023.



Solutions

set of plausible  
model shifts 
Δ

Jiang et al use interval abstractions to obtain formal robustness guarantees

66
Formalising the Robustness of Counterfactual Explanations for Neural Networks. Jiang et al, AAAI 2023. 
Provably Robust and Plausible Counterfactual Explanations for Neural Networks via Robust Optimisation. Jiang et al, ACML 2023.



Solutions

set of plausible  
model shifts 
Δ

Jiang et al use interval abstractions to obtain formal robustness guarantees

67
Formalising the Robustness of Counterfactual Explanations for Neural Networks. Jiang et al, AAAI 2023. 
Provably Robust and Plausible Counterfactual Explanations for Neural Networks via Robust Optimisation. Jiang et al, ACML 2023.



Solutions

set of plausible  
model shifts 
Δ

Jiang et al use interval abstractions to obtain formal robustness guarantees

68
Formalising the Robustness of Counterfactual Explanations for Neural Networks. Jiang et al, AAAI 2023. 
Provably Robust and Plausible Counterfactual Explanations for Neural Networks via Robust Optimisation. Jiang et al, ACML 2023.



! 
DANGER

Brittle explanations ahead!
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Threats 

1. Input perturbations 

2. Model perturbations 

3. Model multiplicity 

4. Noisy execution



Model multiplicity

Model Multiplicity: Opportunities, Concerns, and Solutions. Black et al, ACM FAccT’22.


Situation where models of equal accuracy differ in the process by which they reach a given prediction 
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Model multiplicity
• Age: 30

• Amount: £15K

•Duration: 24M
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Model multiplicity
• Age: 30

• Amount: £15K

•Duration: 24M
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Model multiplicity
• Age: 30

• Amount: £10K 
•Duration: 24M
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Model multiplicity
• Age: 30

• Amount: £10K 
•Duration: 24M
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Model multiplicity
• Age: 30

• Amount: £10K 
•Duration: 24M
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Model multiplicity
• Age: 30

• Amount: £10K 
•Duration: 24M

? ??

DENIED
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Implications

• Disagreeing models might raise concerns about the justifiability of CXs


• Different models might offer better/worse recourse options

Increase by £50

That’s not enough!


Erm, I’ll leave you  
alone now…

77



Solutions

Black et al present an extensive discussion on model multiplicity 


• Not targeting CXs specifically but also applicable to XAI 

Model Multiplicity: Opportunities, Concerns, and Solutions. Black et al, ACM FAccT’22.
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Solutions

Black et al present an extensive discussion on model multiplicity 


• Not targeting CXs specifically but also applicable to XAI 

They propose some approaches to deal with multiplicity:


• Majority voting


• Randomised choice

Model Multiplicity: Opportunities, Concerns, and Solutions. Black et al, ACM FAccT’22.
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Solutions

Black et al present an extensive discussion on model multiplicity 


• Not targeting CXs specifically but also applicable to XAI 

They propose some approaches to deal with multiplicity:


• Meta-rules 

• Majority voting


• Randomised choice

“Always choose the model that has 
at least 95% accuracy”


Model Multiplicity: Opportunities, Concerns, and Solutions. Black et al, ACM FAccT’22.
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Solutions

Black et al present an extensive discussion on model multiplicity 


• Not targeting CXs specifically but also applicable to XAI 

They propose some approaches to deal with multiplicity:


• Meta-rules


• Majority voting 

• Randomised choice

“Two out of three agree, they must be correct”


Model Multiplicity: Opportunities, Concerns, and Solutions. Black et al, ACM FAccT’22.
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Solutions

Black et al present an extensive discussion on model multiplicity 


• Not targeting CXs specifically but also applicable to XAI 

They propose some approaches to deal with multiplicity:


• Meta-rules


• Majority voting


• Randomised choice

“Sample a model and use it”


Model Multiplicity: Opportunities, Concerns, and Solutions. Black et al, ACM FAccT’22.
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Solutions

Pawelczyk et al analyse robustness of CXs 
under model multiplicity:


• CXs on data manifold are more robust


• Robust CXs are more expensive 

On Counterfactual Explanations under Predictive Multiplicity. Pawelczyk et al, UAI 2020.
 83



Solutions

Pawelczyk et al analyse robustness of CXs 
under model multiplicity:


• CXs on data manifold are more robust
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Solutions

Pawelczyk et al analyse robustness of CXs 
under model multiplicity:


• CXs on data manifold are more robust


• Robust CXs are more expensive 

On Counterfactual Explanations under Predictive Multiplicity. Pawelczyk et al, UAI 2020.
 85



Solutions

Counterfactual Explanations and Model Multiplicity: a Relational Verification View. Leofante et al, KR 2023.

Leofante et al present an approach to generate robust CXs under multiplicity


• Builds product network to reason under multiplicity in one go


• Randomised choice
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Solutions

Counterfactual Explanations and Model Multiplicity: a Relational Verification View. Leofante et al, KR 2023.

Leofante et al present an approach to generate robust CXs under multiplicity


• Assumes pre-defined set of models


• Builds product network to reason under multiplicity in one go


• Randomised choice
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Solutions

Counterfactual Explanations and Model Multiplicity: a Relational Verification View. Leofante et al, KR 2023.

Leofante et al present an approach to generate robust CXs under multiplicity


• Assumes pre-defined set of models


• Builds product network to reason under multiplicity in one go


• Randomised choice

=
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! 
DANGER

Brittle explanations ahead!
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Threats 

1. Input perturbations 

2. Model perturbations 

3. Model multiplicity 

4. Noisy execution



Noisy execution

CFX
•Age: 30

•Amount: £15K

•Duration: 24M
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Noisy execution

CFX

•Age: 30

•Amount: £10K

•Duration: 24M

•Age: 30

•Amount: £15K

•Duration: 24M
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Noisy execution

CFX

•Age: 30

•Amount: £10K

•Duration: 24M

•Age: 30

•Amount: £15K

•Duration: 24M

•Age: 30

•Amount: £9.9K

•Duration: 24M
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Noisy execution

CFX

•Age: 30

•Amount: £10K

•Duration: 24M

•Age: 30

•Amount: £15K

•Duration: 24M

•Age: 30

•Amount: £9.9K

•Duration: 24M

? ??

DENIED
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Implications

Recourses are often noisily implemented in real-world settings 

• Noise may invalidate CX


• Jeopardise explanatory function


• Reduce trust

Manipulation-Proof Machine Learning. Björkegren et al, arxiv preprint https://arxiv.org/abs/2004.03865, 2020.


Oh come on!

I said £50, not £49.90
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Solutions
Pawelczyk et al propose to account for noisy execution during CX generation


• Given input , CX  and model 


• Define invalidation rate 


• Define noise-aware loss  as

xF x ℳ

Δ(x) = 𝔼ϵ[ℳ(x) − ℳ(x + ϵ)]

ℒ

Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse. Pawelczyk et al, ICLR 2023. 95
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Pawelczyk et al propose to account for noisy execution during CX generation
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• Define invalidation rate 


• Define noise-aware loss  as

xF x ℳ

Δ(x) = 𝔼ϵ[ℳ(x) − ℳ(x + ϵ)]

ℒ

Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse. Pawelczyk et al, ICLR 2023.

λ1 ⋅ ℓ1(Δ(x), ρ) + λ2 ⋅ ℓ2(ℳ(x),1 − c) + λ3 ⋅ d(xF, x)
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Solutions
Leofante and Lomuscio use formal verification to identify robust CXs 
 

Towards Robust Contrastive Explanations for Human-Neural Multi-agent Systems. Leofante and Lomuscio, AAMAS 2023.

Robust Explanations for Human-Neural Multi-agent Systems with Formal Verification. Leofante and Lomuscio, EUMAS 2023.
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Solutions
Leofante and Lomuscio use formal verification to identify robust CXs 
 

• Given a CX  and model x ℳ

Towards Robust Contrastive Explanations for Human-Neural Multi-agent Systems. Leofante and Lomuscio, AAMAS 2023.

Robust Explanations for Human-Neural Multi-agent Systems with Formal Verification. Leofante and Lomuscio, EUMAS 2023.


CF

101



Solutions
Leofante and Lomuscio use formal verification to identify robust CXs 
 

• Given a CX  and model 


• Check local robustness of   
around  using verifiers

x ℳ

ℳ
x

Towards Robust Contrastive Explanations for Human-Neural Multi-agent Systems. Leofante and Lomuscio, AAMAS 2023.
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Solutions
Leofante and Lomuscio use formal verification to identify robust CXs 
 

• Given a CX  and model 


• Check local robustness of   
around  using verifiers


• CX guaranteed to be robust when  
safe radius identified

x ℳ

ℳ
x

Towards Robust Contrastive Explanations for Human-Neural Multi-agent Systems. Leofante and Lomuscio, AAMAS 2023.

Robust Explanations for Human-Neural Multi-agent Systems with Formal Verification. Leofante and Lomuscio, EUMAS 2023.


CF
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Summing up

• CX generation methods focus on minimising distance 

• This may result in brittle explanations 

• We have examined lack of robustness in four scenarios:


• input noise, model shifts, model multiplicity and noisy execution


• Can we borrow ideas from other areas of CS to fix this? 

105



Some interesting (relevant) directions

Robustness and…


• Formal Explainable AI


• Fairness in ML


• Formal verification of neural networks


• Privacy 


• Others?

106

Delivering Trustworthy AI through Formal XAI. Marques-Silva and Ignatiev, AAAI 2022. 
Counterfactual Explanations Can Be Manipulated. Slack et al, NeurIPS 2021.
Algorithms for Verifying Deep Neural Networks. Liu et al, Found. Trends Optim. 4(3-4): 244-404, 2021.
On the Privacy Risks of Algorithmic Recourse. Pawelczyk et al, AISTATS 2023.

https://dblp.org/db/conf/aaai/aaai2022.html#0001I22
https://dblp.org/db/journals/ftopt/ftopt4.html#LiuALSBK21


Thank you!
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Contacts:


•           f.leofante@imperial.ac.uk


•           https://fraleo.github.io/

mailto:f.leofante@imperial.ac.uk
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